Uniform Convergence in some Limit Theoremsfor Multiple
نویسنده
چکیده
For n particles diiusing throughout R (or R d), let n;t (A), A 2 B, t 0, be the random measure that counts the number of particles in A at time t. It is shown that for some basic models (Brownian particles with or without branching and diiusion with a simple interaction) the processes f(n;t () ? E n;t ())= p n : t 2 0; M]; 2 C L (R)g, n 2 N, converge in law uniformly in (t;). Previous results consider only convergence in law uniform in t but not in. The methods used are from empirical process theory.
منابع مشابه
ON CONVERGENCE THEOREMS FOR FUZZY HENSTOCK INTEGRALS
The main purpose of this paper is to establish different types of convergence theorems for fuzzy Henstock integrable functions, introduced by Wu and Gong cite{wu:hiff}. In fact, we have proved fuzzy uniform convergence theorem, convergence theorem for fuzzy uniform Henstock integrable functions and fuzzy monotone convergence theorem. Finally, a necessary and sufficient condition under which th...
متن کاملAlmost Sure Convergence Rates for the Estimation of a Covariance Operator for Negatively Associated Samples
Let {Xn, n >= 1} be a strictly stationary sequence of negatively associated random variables, with common continuous and bounded distribution function F. In this paper, we consider the estimation of the two-dimensional distribution function of (X1,Xk+1) based on histogram type estimators as well as the estimation of the covariance function of the limit empirical process induced by the se...
متن کاملStatistical uniform convergence in $2$-normed spaces
The concept of statistical convergence in $2$-normed spaces for double sequence was introduced in [S. Sarabadan and S. Talebi, {it Statistical convergence of double sequences in $2$-normed spaces }, Int. J. Contemp. Math. Sci. 6 (2011) 373--380]. In the first, we introduce concept strongly statistical convergence in $2$-normed spaces and generalize some results. Moreover, we define the conce...
متن کاملOn statistical type convergence in uniform spaces
The concept of ${mathscr{F}}_{st}$-fundamentality is introduced in uniform spaces, generated by some filter ${mathscr{F}}$. Its equivalence to the concept of ${mathscr{F}}$-convergence in uniform spaces is proved. This convergence generalizes many kinds of convergence, including the well-known statistical convergence.
متن کاملSome fixed points for J-type multi-valued maps in CAT(0) spaces
In this paper, we prove the existence of fixed point for J-type multi-valuedmap T in CAT(0) spaces and also we prove the strong convergence theoremsfor Ishikawa iteration scheme without using the xed point of involving map.
متن کامل